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Motivation and Background
Goal:

e To predict, across-subjects, the BOLD responses to face image
stimuli using a sparse Bayesian latent variable model of

multiple FMRI datasets
Datasect:

e Publicly available dataset (www.OpenfMRI.org)[1]
e 210 volumes x 9 runs x 14 subjects
® TR= 2000 ms; voxel size= 3x3x3.75 mm

Experimental Design:
eRapid event-related design: 9 conditions

®450 stimuli (Famous, Familiar, scrambled
Faces), repeated twice

Preprocessing Pipeline
Structural (Freesurfer):

e Cortical surface extraction and
Flattening

e Anatomical segmentation and ROI
labeling

eSurface-based intersubject registration

Functional (Python Nipype):

Experiment

Freesurfer Pipeline

e Realign all volumes across runs to the 1st
volume of First run (reference)

e Compute within-subject registration from
anatomical to Functional

® Mask functional data with 8 ROIs to obtain

~1800 voxels For each dataset
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Nipype Workflow

Methods

Estimation of Beta Weights (activations):

e Deconvolution using separate designs GLM with Finite
Impluse Response (FIR) basis [2]

e Local detrending using a Savitsky-Golay filter with a polynomial
of degree 3 and a window of 59 s

Predictive InfFerence:

e A Bayesian Group Factor Analysis (BGFA) model [3] with a hierarchical
automatic relevance determination (ARD) sparse prior on the vector
components of the weight matrix For 100 factors and 14 datasets

e The BGFA model extends Canonical Correlation Analysis (CCA)
to multiple groups and generalizes multi-battery factor analysis
(MBFA)[4] by allowing dependencies between subsets of the
datasets to be estimated

® The model was fit using variational Bayesian algorithms
implemented in the R package CCAGFA
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e Most of the analyses were run on the Oakley |

supercomputer at the Ohio Supercomputer Center Oakley

Computation:

Psychology

Results

Predictive Performance:

e Leave-one-run-out data folding
gave the best low rank solution:
R=3 with prediction RMSE=0.9045

Data Visualization (Pycortex):

e Right: Subject 2's projection weights
corresponding to the 9th fFactor

e Below: correlation between predicted
data and test data across voxels

Projection Weights (loadings)

Correlation Cortical Map
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