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Deconvolution using  separate designs GLM with Finite
 Impluse Response (FIR) basis [2]
Local detrending using a Savitsky-Golay filter with a polynomial
 of degree 3 and a window of 59 s

Methods

A Bayesian Group Factor Analysis (BGFA) model [3] with a hierarchical
automatic relevance determination (ARD) sparse prior on the vector
components of the weight matrix for 100 factors and 14 datasets

Estimation of Beta Weights (activations): 

Predictive Inference:

Most of the  analyses were run  on  the Oakley 
supercomputer at the Ohio Supercomputer Center

Computation:

Weight matrix of the
 top 11 factors

Model:

The BGFA model extends Canonical Correlation Analysis (CCA) 
to multiple groups and  generalizes multi-battery factor analysis
(MBFA)[4] by allowing dependencies between subsets of the
datasets to be estimated

The model was fit using variational Bayesian algorithms
implemented in  the R  package CCAGFA 
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Results
Predictive Performance:

Leave-one-run-out data folding 
gave the best low rank solution:
R=3 with prediction RMSE=0.9045

Data Visualization (Pycortex):

Right: Subject 2's projection weights 
corresponding to the 9th factor 
Below: correlation between predicted 
data and test data across voxels

Projection Weights (loadings)

Correlation Cortical Map
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Motivation and Background

Publicly available dataset (www.OpenfMRI.org)[1]
210 volumes x 9 runs x 14 subjects
TR= 2000 ms; voxel size= 3×3×3.75 mm

Rapid event-related design: 9 conditions 
450 stimuli (famous, familiar, scrambled 
faces), repeated twice

Realign all volumes across runs to the 1st 
volume of first run (reference)
Compute within-subject registration from 
anatomical to functional
Mask functional data with 8  ROIs to obtain  
~1800 voxels for each dataset

Cortical surface extraction and  
flattening
Anatomical segmentation and ROI 
labeling
Surface-based intersubject registration

Structural (Freesurfer): 

Functional (Python Nipype): 

Dataset:

Experimental Design:

Goal:

Preprocessing Pipeline

To predict, across-subjects, the BOLD responses to face image
 stimuli using a sparse Bayesian latent variable model of
 multiple fMRI datasets

Experiment

Freesurfer Pipeline

Nipype Workflow
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