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Part I

Dr. Cudeck: Bayesian estimation of

models for repeated measures and

sequential data
Mixture models have been studied by many authors in order to address the problem of hetero-

geneity in a population. For example, mixture models are proposed as a way to account for

different types of response styles in repeated measures studies. A very general approach of this

kind is a model that specifies that a heterogeneous population is a mixture of components of

K normal populations. Let y be a (Jx1) multivariate observation. To be concrete, if there are

K = 3 component sub-populations then a popular specification for the distribution of y is

g(y) = π1g1(y) + π2g2(y) + π3g3(y)

where gk(y) is the normal distribution with mean vector µk and covariance matrix |Σk , and

πk , with 0 < πk < 1 and π1 + π2 + π3 = 1, is the probability of membership in class k.

In most approaches to the mixture problem it is essential to assume that K is known and

specified a priori. Unfortunately specification of K is extremely difficult even when K ≤ 3.

Furthermore, in most approaches to the mixture problem the component distributions, gk(y),

are normals even though it is easy to imagine other distribution being more flexible.

1 Question Part A: Model Specification

Question Present a Bayesian version of the mixture model that is as general as possible in

terms of the number and type of component distributions.

Dirichlet Process Mixture of Normals Model For subjects i = 1, 2, .., T , let yi =

[yi1, yi2, . . . , yiD] be vector of D measurements for subject i, where D � T . Here we as-

sume that the subjects can be divided into K clusters such that each subject (i.e. observation)

belongs to one particular cluster only. That is, each observation yi is given a cluster label
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zi ∈ {1, . . . , K}. We specify a Dirichlet Process Mixture of Normals model as follows

G | α ∼ DP(αG0)

(µt,Σt) | G ∼ G

yt | µt,Σk ∼ Normal(µt,Σt)

(1)

where

α is the concentration parameter

G0 = p (µ,Σ) ≡ Normal-Inv-Wishart(µ0, κ0, ν0,Λ0) is the centering distribution

θk = (µk,Σk) mean and covariance of observations in the kth class

Θ = (θ1, · · · , θK) collection of all K parameter vectors

Y = (y1,y2, . . . ,yT ) the data consiting of all T observations

Z = (z1, · · · , zT ) vector of class labels for all T observations

C = {c1, c2, . . . , cK : ck ⊆ {1, 2, . . . , T}} clustering of the observations into K clusters

N = {N1, N2, . . . , NK : Nk =
T∑
i=1

δ(zi = k)} number of observations in each cluster
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2 Question Part B: Forward Simulation

Question Generate artificial data based on the model you specify in Part A

Figure 1 shows plots of T = 500 three dimensional observations generated four times under

Model 1 with the following the hyperparameters:

α = 0.5 is the concentration parameter

µ0 = [0, 0, 0] prior belief about mean vector

κ0 = .03 number of pseudo-observations ascribed to the prior

ν0 = 30 confidence of prior belief

Λ0 = I3 variation from the mean vector

The four realizations of the Dirichlet process mixture model show large variation in the separa-

tion of the mixture components. An alternative way of generating data starts with pre-setting

the values of the µ and Σ component parameters to a fixed values. For example, Σ can be

assigned the identity matrix and µ can take values of the coordinates of a D − dimensinal

hypercube for a reasonable number of components we expect to obtain based on the value of

α. Figure 2 shows simulated data, for 300 observations, where the values of the µ components

are the multiset permutations of the (±1.5,±1.5,±1.5) coordinate values.
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Figure 1: Four realization of the data generating model
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Figure 2: Four realization of the data generating model for fixed parameter values

For posterior simulation to be conducted in Part C, we have chosen Dataset 4 with four compo-

nents. Figure 3 shows the dataset from different views so that its three dimensional structure

can be visualized.
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Figure 3: Three views of Dateset 4
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3 Question Part C: Posterior Simulation

Question There are several ways to estimate the model. Write computer code in your lan-

guage of choice that fits the model of Part (A) to the data of Part (B). Use the estimation

method you believe is most appropriate and most flexible. (i) Briefly describe the method and

the properties that make it attractive. Give proper references. (ii) Fit the model. (iii) Review

how model fit is assessed and report estimates. (iv) Comment on how well the parameters are

recovered. Attach computer code as an appendix.

Answer Numerical integration can be divided into deterministic methods and simulation

methods. Deterministic (i.e. gird based) numerical integration methods such as adaptive

quadrature have lower variance but breakdown in high dimensions. Simulation methods have

higher variance but scale better in high dimensions. Two of the most important simulation

based methods are Markov Chain Monte Carlo and Sequential Monte Carlo. For posterior

inference on the selected dataset, we consider a Sequential Monte Carlo method known as Se-

quential Importance Resampling or the Particle Filter.

Let z1:T = {z1, z2, . . . , zT} and y1:T = {y1,y2, . . . ,yT} denote the latent cluster labels and the

set of observations up to time T . The posterior distribution of the cluster labels is

π(z1:T | y1:T ) =
p(z1:T ,y1:T )

p(y1:T )
=
p(y1:T | z1:T )p(z1:T )

p(y1:T )
(2)

As T increases, we obtain a sequence of probability densities of increasing dimension, namely

{πT (z1:T | y1:T )}T∈N. Sequential Monte Carlo methods sample sequentially from {πT (z1:T |

y1:T )}T∈N providing an approximation of each target distribution π(z1:T | y1:T ) and an estimate

of its corresponding normalizing constant ZT = p(y1:T ).

The Particle Filter algorithm extends Sequential Importance Sampling method, which in turn

builds upon Importance Sampling, which in turn is a modification of Monte Carlo simulation

methods. Each of the four methods has been developed to overcome a specific type of problem.

The four problems are basically concerned with the target posterior, Equation 2.

3.1 Monte Carlo Simulation

Problem 1 The target distribution is impossible to compute in closed-form
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Solution We can simulate the target distribution using random samples (i.e. particles) drawn

from it. More specifically, for particles, z
(i)
1:T ∼ π(z1:T | y1:T ) for i = 1, ..., N , the perfect Monte

Carlo approximation is:

π̂N(dz1:T | y1:T ) =
1

N

N∑
i=1

δz1:T (i)(dz1:T )

3.2 Importance Sampling

Problem 2 The target π(z1:T | y1:T ) is a complex high-dimensional distribution such that

sampling from it is practically impossible

Solution We choose a proposal distribution q(.) we can sample from and reweigh the proba-

bility measure accordingly. More specifically, let

π(z1:T | y1:T ) =

[
π(z1:T |y1:T )
q(z1:T |y1:T )

]
q(z1:T | y1:T )∫ [

π(z1:T |y1:T )
q(z1:T |y1:T )

]
q(z1:T | y1:T )dz1:T

∝ wT (z1:T )q(z1:T | y1:T )

where

wT (z1:T ) =
π(z1:T | y1:T )

q(z1:T | y1:T )

Now for particles, z
(i)
1:T ∼ q(z1:T | y1:T ) for i = 1, ..., N , the Monte Carlo approximation is:

π̂N(dz1:T | y1:T ) =
N∑
i=1

WT (z
(i)
1:T )δz1:T (i)(dz1:T )

where the normalized importance weights are

WT (z
(i)
1:T ) =

wT (z
(i)
1:T )∑N

j=1 wT (z
(j)
1:T )

, wT (z
(i)
1:T ) =

π(z1:T | y1:T )

q(z
(i)
1:T | y1:T )

3.3 Sequential Importance Sampling

Problem 3 The number of observations T is large and the computational complexity of

sampling increases at least linearly with T

Solution We can use a divide-and-conquer strategy and break the problem into smaller parts.

This approach to problem solving is known as recursion. Recursion is usually contrasted with

iteration, where we resort to repetition until a task is completed (e.g. MCMC).
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First, consider a general state space model

zt ∼ p(zt | zt−1) t ≥ 1

yt ∼ p(yt | zt) t ≥ 1

that assumes:

1. The Markov property of latent labels

p(zt | z1:t−1,y1:t−1) = p(zt | zt−1)

2. The conditional independence of observations

p(yt | z1:t,y1:t−1) = p(yt | zt)

These two assumptions imply that

p(y1:T | z1:T ) =
T∏
t=1

p(yt | zt)

p(z1:T ) =
T∏
t=1

p(zt | z(t−1)) (p(z0) = c)

allowing the full the posterior to be factored as such

π(z1:T | y1:T ) ∝
T∏
t=1

p(yt | zt)p(zt | z(t−1))

which gives us the following recursion relation:

π(z1:t | y1:t) ∝ p(yt | zt)p(zt | z(t−1))π(z1:t−1 | y1:t−1)

In sequential importance sampling, we select an importance distribution with the following

recursive structure

q(z1:t | y1:t) = q(zt | z1:t−1,y1:t)q(z1:t−1 | y1:t−1)

The above decomposition implies we can at time t draw particles z
(i)
1:t ∼ q(z1:t | y1:t) for

i = 1, ..., N by

1. drawing samples z
(i)
1:t−1 from q(z1:t−1 | y1:t−1)

2. drawing new samples z
(i)
t from q(zt | z(i)

1:t−1,y1:t).
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The Monte Carlo approximation of π(z1:t | y1:t) at time t is:

π̂N(dz1:t | y1:t) =
N∑
i=1

Wt(z
(i)
1:t)δz1:t(i)(dz1:t)

as a result we get the following recursion relation for the importance weights:

wt(z1:t) =
π(z1:t | y1:t)

q(z1:t | y1:t)

∝ p(yt | zt)p(zt | zt−1)π(z1:t−1 | y1:t−1)

q(zt | z1:t−1,y1:t)q(z1:t−1 | y1:t−1)

∝ p(yt | zt)p(zt | zt−1)

q(zt | z1:t−1,y1:t))
wt−1(z1:t−1)

So if at time t − 1 we have a set of particles and corresponding weights {(W (i)
t−1, z

(i)
1:t−1) : i =

1, ..., N} that represent the distribution π(z1:t−1 | y1:t−1), we can obtain a Monte Carlo approx-

imation to π(z1:t | y1:t) at time t by

1. drawing new samples z(i)
t from q(zt | z(i)

1:t−1,y1:t).

2. updating the weights p(yt|z(i)t )p(z
(i)
t |z

(i)
t−1)

q(z
(i)
t |z

(i)
1:t−1,y1:t))

wt−1(z
(i)
1:t−1) and then normalizing them

so for particles, z(i)
t ∼ q(zt | z(i)

1:t−1,y1:t) for i = 1, ..., N , the Monte Carlo approximation for the

filtering distribution is:

π̂N(dzt | y1:t) =
N∑
i=1

W
(i)
t δzt(i)(dzt)

such that the set of particles and corresponding weights {(W (i)
t , z

(i)
t ) : i = 1, ..., N} represent

the distribution π(zt | y1:t) at time t.

We can now focus on the marginal distribution p(zt | y1:t−1), which has the following recursive

relations that can be obtained by the Chapman-Kolmogorov equation:

π(zt | y1:t−1) =

∫
p(zt | zt−1)π(zt−1 | y1:t−1)dzt−1

π(zt | y1:t) =
p(yt | zt)p(zt | y1:t−1)∫
p(yt | zt)p(zt | y1:t−1)dzt

based on which, the prior and posterior can be approximated as follows:
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π̂N(zt | y1:t−1) ∝
N∑
i=1

W
(i)
t p(zt | z(i)

t−1)

π̂N(zt | y1:t) ∝
N∑
i=1

W
(i)
t p(yt | zt)p(zt | z(i)

t−1)

which play a part in the following relationship:

π(z1:t | y1:t) ∝ p(z1:t,y1:t−1,yt)

∝ p(yt | z1:t,y1:t−1)p(z1:t,y1:t−1)

∝ p(yt | z1:t,y1:t−1)p(zt | z1:t−1,y1:t−1)p(z1:t−1 | y1:t−1)

∝ p(yt | z1:t,y1:t−1)p(zt | y1:t−1)

3.4 Sequential Importance Resampling (The Particle Filter)

Problem 4 The Degeneracy Problem: Almost all of the particles can have zero, or close

to zero, weights.

Solution Multiply particles with large weights and eliminate those with small weights. More

specifically, resample the collection of weights and particles {W (i)
t , z

(i)
1:t} (i.e. select z

(i)
1:t with

probability W (i)
t ) to obtain N new equally-weighted particles { 1

N
, z̄

(i)
1:t}.

That is, the distribution π(zt | y1:t) which is approximated by

π̂N(dzt | y1:t) =
N∑
i=1

W
(i)
t δzt(i)(dzt)

becomes in turn approximated by a resampled empirical measure

π̄N(dzt | y1:t) =
N∑
i=1

N
(i)
t

N
δzt(i)(dzt) =

N∑
i=1

1

N
δz̄t(i)(dzt)

where N (i)
t is the number of offspring associated with each particle z

(i)
1:t

Several resampling algorithms have been proposed, but we will discuss the stratified sampling

algorithm that has been proposed by (Carpenter, Clifford, & Fearnhead, 1999). The main idea

of the algorithm is to remove particles whose weights fall below a given threshold 1
c
and resample

from the remaining particles. The threshold is chosen so that the resampling is optimal for all

unbiased resampling procedures in terms of minimizing variability in the weights introduced by

resampling.
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3.5 Particle Filter Implementation

We have implemented the Sequential Importance Resampling algorithm in Julia. The exact

details of the implementation of the multivariate Dirichlet Process Mixture of Normals are

given in(Fearnhead, 2004) and in (Wood & Black, 2008). The authors of latter paper kindly

provided Matlab code of their implementation. The Julia code we wrote was based upon their

Matlab code, especially the resample startified function that implements the resampling step.

The Julia code can be found in the appendix.
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3.6 Model Fit

Figure 4 displays the results of data clustering using Dirichlet Process Mixture of Normals

model.
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Figure 4: Latent Classes: True vs Predicted

As can be seen from the graph, the cluster labelling is shuffled. This is due to the invariance

of the posterior distribution under the relabelling of the components. The estimated cluster

labels were permuted in order to produce the accuracy estimates.
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It can be seen that whereas the true number of clusters is three, the mean number of clusters

that the posterior inference gave was four. It should be noted that the mean of the posterior

distribution is just a point summary of the uncertainty that is inherent in the inference and

that a more complete picture is provided by the entire distribution of the number of clusters.

Moreover, the DPMN model assumes an infinite number of clusters and for finite data the ex-

pected number of clusters is a function of the concentration parameter that we set to α = 0.4.

The full implication of the model’s assumptions and the effect to of the value of α on inference

is covered in Chapter 1.

At any rate, we can assess the model’s classification accuracy with the aid of a confusion matrix,

Figure 5. The confusion matrix we obtained is actually better called a matching matrix since

the cluster labels are treated as unobserved latent variables in the model. Now, the four rows

of the matching matrix refer the true cluster labels (i,.e. 1, 2, 3) plus an additional label, Label

4. The columns refer to the predicted cluster labels (i,.e. 1, 2, 3, 4). We see that for Label 1,

the hit rate is %100. That is, all observations in Cluster 1, except for a a single observation,

were correctly classified and labelled. An overall measure of classification accuracy is given

by the true positive rate, which measures the proportion of cluster labels that are correctly

identified. The true positive rate we obtained for the model is 0.988.

Figure 5: Confusion Matrix:

True vs Predicted Cluster Labels

One feature of the particle filter algorithm that is important to consider is the number of

particles used represent the target distribution. The inaccuracy in the particle filter comes

through approximating the posterior distribution by a finite number of particles, so an adequate

number of particles is necessary for robust inference. We used 6000 particles to fit the model,but

fewer number of particles was also attempted (e.g. 3000) with not much noticeable decrease in

accuracy.
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Part II

Appendix: Julia and R Code

.1 Forward Simulation Code in Julia

Figure 6: Julia code for generating data from a DPM model: Helping functions
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Figure 7: Julia code for generating data from a DPM model: plotting
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.2 Posterior Simulation Code in Julia: Particle Filter

Figure 8: Particle Filter: Function Definitions 1
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Figure 9: Particle Filter: Function Definitions 2
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Figure 10: Particle Filter: Function Definitions 3
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Figure 11: Particle Filter: Function Definitions 4
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Figure 12: Particle Filter: Main Body 1
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Figure 13: Particle Filter: Main Body 2

24



Figure 14: Particle Filter: Plotting
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