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Part I

Dr MacEachern: Dirichlet process models

and applications
The Dirichlet process forms the core of many nonparametric Bayesian models. These models

are used for a variety of purposes, ranging from density estimation, to latent class models, to

the mixed model, and beyond. In this question, you are asked to describe the basics of these

models, describe uses of the models, and to explore some of their properties.

1 Question Part A: Model Setup

A basic approach to the one-sample problem relies on a smoothed Dirichlet process. Formally

write a model which involves (i) a distribution drawn from a Dirichlet process, (ii) a kernel to

smooth the distribution so that it is continuous rather than discrete, and (iii) a distribution on

the parameter that governs the Dirichlet process. Explain your model.

1.1 Model Specification: Multivariate Case

Consider data Y = (y1,y2, . . . ,yt, , . . .) such that each observation yt = [yt1, yt2, . . . , ytD], is a D

dimensional vector of measurements. A Dirichlet Process Mixture of Normals (DPMN)

model for such data has the following hierarchical specification:

α ∼ Gamma(aα, bα)

G | α ∼ DP(αG0)

(µt,Σt) | G ∼ G

yt | µt,Σk ∼ Normal(µt,Σt)

(1)

Things to note:

• G is a random probability measure whose prior distribution is the Dirichlet Process

with a base distribution αG0 that is the product of two parameters:

1. A centering distribution providing an initial guess at the measure G. Can be

thought of as the mean parameter of the DP.

G0 = p (µ,Σ) ≡ Normal-Inv-Wishart(µ0, κ0, ν0,Λ0)
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2. A concentration parameter α that governs how far from G0, the realizations of

G tend to be. Can be thought of as the inverse-variance parameter of the DP.

• The random measure G is discrete, consisting of point masses. In order to obtain

a continuous probability measure on the data, we convolve the point masses by the

Normal(. | µ,Σ) kernel to smear them out.

• The Normal-Inverse-Wishart centering distribution is the conjugate prior of a multivari-

ate normal distribution with unknown mean and covariance. The Normal-Inverse-Wishart

has the following four parameters:

µ0 : Prior belief (i.e. confidence) about mean vector

κ0 : Number of pseudo-observations, control variance of the means relative to variance

ν0 : Number of pseudo-observations, control relative variance of prior belief

Λ0 : Precision matrix, controls variation from the mean vector

1.2 Model Specification: Univariate Case

To model univariate data Y = (y1, y2, . . . , yt, . . .), we replace the joint conjugate multivariate

centering distribution with its univariate special case(
µ, σ2

)
∼ Normal-Inv–χ2 (µ0, κ0, ν0, λ0)

which can be expressed with a two-step sampling hierarchy

σ2 ∼ Scale–Inv–χ2(ν0,
1

λ2
0

)

µ |σ2 ∼ Normal(µ0,
σ2

κ0

)

The univariate Dirichlet Process Mixture of Normals model can be written as

α ∼ Inv–Gamma(aα, bα)

G | α ∼ DP(αG0)

(µt, σt) | G ∼ G

yt |µt, σ2
t ∼ Normal(µt, σ

2
t )

(2)

where

G0 = p
(
µ, σ2

)
≡ Normal-Inv–χ2 (µ0, κ0, ν0, λ0)

θk =
(
µk, σ

2
k

)
is the mean and variance of the kth class

Note that the Scale-Inv–χ2(ν0,
1
λ20

) distribution is equivalent to Inv–Gamma(ν0
2
, ν0

2λ20
).
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1.3 Joint Conjugate Priors

By choosing the Normal-Inv–χ2 joint conjugate prior for (µ, σ2), we induce a variance-dependent

prior on µk such that when the sampling variance σ2
k of the observations is high, the uncertainty

about µk is correspondingly large - yet calibrated by κ0, the number of pseudo-observations

we assign a priori. This form of dependence can be seen in Figure 1, which shows plots of

Normal-Inv–χ2 density for different values of κ0, ν0, and λ0. The variance-dependent prior

on µ is appropriate for many modelling situations since an increase in the unknown variance

corresponds to a proportional increase in the variance of the mean, but the dependency will

need to be removed when we consider random effects and semiparametric models.
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Figure 1: Probability Density of Normal-Inverse–χ2
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1.4 Model Description and Explanation

A Dirichlet Process Mixture of Normals is a nonparametric Bayesian model. To explicate

the definition, we survey in the next few paragraphs, some basic concepts and non-rigorous

definitions that are needed to clarify this class of models.

Probability Model We begin with the sample space X (e.g. X = {0, 1}), a nonempty

set whose elements are called outcomes x ∈ X . From X we generate the powerset P(X )

(e.g. P(X ) = {∅, {0}, {1}, {0, 1}}), the set of all subsets of X . A set along with a collection

of operations (e.g. +,×) is called an algebraic structure. A powerset (P(X ),∩,∪,¬, ∅,X )

is an algebra of sets, a type of algebraic structure characterized by having only two binary

operations (∩,∪). Subsets of X are termed events. To equip a set with a structure, it should

not be too large. For example, when the set is the real line (i.e. X = R), the powerset of

R, P(R), is simply too big to be manageable. More specifically, for a countably infinite set

such as the natural numbers N, for example, the cardinality of N is denoted by beth null,

i0. The cardinality of the set of all subsets of the natural numbers P (N) is denoted by i1,

which is also equal to the cardinality of the continuum R. The number of subsets of R (i.e.

number of events) is then equal to the cardinality of P (P (N)), the power set of the set of real

numbers. The cardinality of this huge space is denoted by i2. To stay within the limits of the

continuum, we need to restrict ourselves to a subset of all possible events. This subset of interest

is called a σ-algebra B(X ). More specifically, a σ-algebra B ⊂ P(X ) is a sub-algebra of the

powerset, completed to include countably infinite operations. The smallest possible σ-algebra

is a collection of just two sets, {X , ∅}. The largest possible σ-algebra is the collection of all the

possible subsets of X , the powerset. Now that we have found a way to enumerate all possible

events, we need a function that assigns probabilities to events. That function P : B → R, is

called a probability measure and is defined on the measurable space
(
X ,B(X )

)
. Finally,

the combination of a measurable space and a probability measure gives us a probability space

(X ,B, P ), a space (i.e. a set equipped with some structure) in which the trinity of outcomes,

events, and probabilities are rigorously defined.

Statistical Model There are infinitely many possible probability measures we can choose

from. Indeed, letM(X ) denote the space of all probability measures on
(
X ,B(X )

)
. Since

M(X ) is vast, we might feel tempted to restrict ourselves to a subset of the space. We can do

that by introducing a parameter θ ∈ Θ that represents the pattern that explains the data.

Also, we should not forget about the parameter space Θ, the set of all possible values of
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θ. Here is an example, if we let Θ = R2 represent the set of linear functions, then θ ∈ R2

determines the linear trend in simple linear regression. As a result, the probability measures

Pθ are now elements of PM(X ), the space of all probability measures on Θ with elements

Pθ ∈ PM(X ) indexed by a parameter θ ∈ Θ. A statistical model P therefore is a subset

P ⊂ PM(X ) such that P = {Pθ | θ ∈ Θ} where θ → Pθ is a bijective and measurable

assignment. The model P is parametric statistical model if Θ ⊂ Rd for some d ∈ N. The

subset P ⊂ PM(X ) can be restricted further by specifying a family of parametric models

G = {Gθ | θ ∈ Θ} where θ → Gθ is smooth. For example, G = {N(θ, 1) : θ ∈ Θ} specifies

the one-dimensional normal location family of models. If on the other hand, Θ is infinite

dimensional, then P is a nonparametric statistical model. In this case Θ is equivalent to

M(X ), the space of all probability measures on
(
X ,B(X )

)
.

Bayesian Model A parameteric Bayesian statistical model (P ,Π) consists of a model

P , the observation model, and a prior distribution Π on Θ such that θ is a random

variable taking values in Θ and Π
(
{Pθ : θ ∈ Θ}

)
= 1. In a Bayesian model, data is generated

hierarchically in two stages:

θ ∼ Π

X1, X2, . . . | θ ∼iid Pθ θ ∈ Θ ⊂ Rd

After we observe data (X1, X2, ..., XT ), the prior is updated to the posterior Π(. | X1, X2, ..., XT ).

A nonparametric Bayesian model is a Bayesian model whose prior Π is defined on an

infinite dimensional parameter space Θ. The corresponding two-stage hierarchical model is

given as

P ∼ Π

X1, X2, . . . | P ∼iid P P ∈ P

A prior distribution on an infinite dimensional space is a stochastic process. Defining an

infinite dimensional prior distributions is not straightforward, but one way to construct a prior

distribution Π on Θ is through De Finetti’s Theorem.

De Finetti’s Theorem. A sequence of random variables {Xt}∞t=1 with values on X is ex-
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changeable if and only if there is a unique measure Π on Θ such that for all T

P (X1 = x1, X2 = x2, ..., XT = xT ) =

∫
Θ

(
T∏
t=1

θ(Xt = xt)

)
Π(dθ) General Form

∫
Θ

(
T∏
t=1

p(Xt = xt | θ)

)
p(θ)dθ Specific Form

The theorem gives us a infinite mixture representation of the joint probability of the observa-

tions. More importantly, it shows that exchangeability implies conditional independence of the

observations given θ.

Dirichlet Distribution When X is finite, there is usually a natural unique measure Π we

can obtain. More specifically, if X = {1, 2, . . . , K}, then PM(X ) = {(p1, . . . , pK) : 0 ≤ pk ≤

1,
∑
pk = 1}. That is, the space of probability measures corresponds to a simplex parametrized

by a K − 1 dimensional vector p = (p1, . . . , pK−1). A natural prior Π to specify on p is the

Dirichet distribution. For example, consider the Bayesian model(P ,Π) where the observation

model P is the Categorical distribution defined on the sample space X = {1, 2, . . . , K}, and

the prior Π is the Dirichlet distribution defined on the simplex Θ = {(p1, . . . , pK) : 0 ≤ pk ≤

1,
∑
pk = 1}

p ∼ Dirichlet(α)

xi | p ∼ Categorical(p)

where α =
( α
K
, · · · , α

K

)
p = (p1, · · · , pK)

Here, the Dirichlet distribution is the conjugate prior of the Categorical distribution and the

concentration hyperparameter vector α represents the number of pseudo-observations, the a

priori weights, for each of the K clusters. Figure 2 shows density and sampling plots corre-

sponding to Dirichlet distributions for K = 3 and several choices of α.

Dirichlet Process The Dirichlet distribution is a conjugate prior that allows us to sample

iid from X = {1, 2, . . . , K}. To generalize, we can make X = R thus obtaining the space of

all measures M(R) defined on the measurable space (R,B), which is the real line equipped

with the Borel σ-algebra.The Borel σ-algebra is the σ-algebra generated by the open sets.

An element of a Borel σ-algebra is a Borel set. It is a set that can be constructed from

open or closed sets by repeatedly taking countable unions and intersections. For example:

B(R) := σ(C); C = {(a, b],−∞ ≤ a ≤ b ≤ ∞}.
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Figure 2: Dirichlet Distributions

It can be shown (Ghosh & Ramamoorthi, 2006)

that for every partition B1, B2, . . . , Bk of the real

line R by Borel sets, there exists a unique mea-

sure DPα onM(R) called the Dirichlet Process

with parameter α satisfying

(P (B1), P (B2), . . . , P (Bk)) = DP (αB1, αB2, . . . , αBk))

That is, when X = R, thenM(R), is the space

of all probability measures on R. If the sample

space X = R is partitioned into measurable subsets, then for every partition (B1, B2, . . . , Bk),

the prior probability measure Π on (p(B1), p(B2), . . . , p(Bk)) is a Dirichlet process prior.

As stated earlier, Bayesian models can be thought of as a random mixture model where we

first sample from a mixing measure θ ∼ Π, then sample from a component Xt | θ ∼ Pθ. In

general a random mixing measure has the following form:

G(.) =
K∑
k=1

pkδθk(.)

and the Dirichlet process is a distribution on random probability measures of the form

G(.) =
∞∑
k=1

pkδθk(.) where
∞∑
k=1

pk = 1

The Dirichlet process DP (G0, α) is the simplest distribution - in terms of the extent of in-

dependence it assumes - that can have this form. That is probably why it has been referred

to as the normal distribution of Bayesian nonparametrics. More specifically, the location of

the atoms, the θ′s, are sampled iid but the weights are sampled as independent proportions.

Now, the weights cannot be sampled iid because then they will not sum up to one. However,

the next best thing to iid sampling is to obtain independent proportions, as is done using the

stick-breaking representation.
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Figure 3: Realizations of the Dirichlet Process

Stick Breaking Representation The stick breaking construction, namely

G(.) =
∞∑
k=1

pkδθk(.)

where θ ∼iid G0

Vk ∼ Beta(1, α)

pk = Vk

k−1∏
i=1

(1− Vi)

allows us to visualize the realizations of the Dirichlet Process G | α ∼ DP(αG0). Figure 3

shows plots of samples from the Dirichlet process for different settings of α by means of the

stick-breaking construction

Dirichlet Process Mixtures As (Persi Diaconis, 1986) have shown, the Dirichlet process

prior can behave pathologically and give inconsistent estimates even for a location parameter

problem with known density. The Dirichlet Process is defined on discrete measure and is

therefore not an appropriate prior for continuous distributions. Nonetheless, this drawback

can be elevated by incorporating a continuous kernel density allowing it to be defined over

continuous distributions.

LetM(R) denote the space of all probability measures on (R,B) and let Π be the prior over

11



the space of measures. For data y | G ∼ FG the Dirichlet Process Mixtures of Normals

(DPMN) can be specified as

fG(y) =

∫
Θ

Normal(y | θ)G(dθ)

where the prior Π for the unknown mixing measure G ∼ Π is a Dirichlet Process prior DP(αG0).

Through the transform, the DP prior induces a prior on fG(y) called the Dirichlet Process

Mixture (DPM). The corresponding stick-breaking representation of the DPMN model is

fG(y) =
∞∑
k=1

pk Normal(y | (µk,Σk))

where (µk,Σk) ∼iid G0

Vk ∼ Beta(1, α)

pk = Vk

k−1∏
i=1

(1− Vi)

G0 = p (µ,Σ) ≡ Normal-Inv-Wishart(µ0, κ0, ν0,Λ0)
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2 Question Part B: Model Applications

Question Describe how the model in part A can be used (i) for density estimation, (ii) for

latent class analysis, and (iii) as a random effects model. For each use of the model, describe the

data that would be needed for that use and how output from the model could be interpreted.

Include cautions on these interpretations, as appropriate.

Answer To see how the DPMNmodel can be used for density estimation, latent class analysis,

and random effects modelling, we start with a finite mixture model to clarify the basic ideas.

Finite Mixtures Consider the data Y = (y1,y2, . . . ,y500) depicted in the overlayed scatter

plot of Figure 4. The data consists of T = 500 observations where each observation yt = [yt1, yt2]

is a D = 2 two-dimensional vector of measurements.
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Figure 4: Mixture Data

If we observe, or rather assume, that the data exhibits some form of grouping pattern, we can

then attempt to cluster the T observations into K ≤ T subsets. That is, we can give each

observation yi a cluster label zi ∈ {1, . . . , K} such that each observation belongs to one cluster

only. Of course, the clustering labels are unobserved and our goal, accordingly, is to uncover

their values in order to determine the underlying statistical representation of the data.

We start by introducing the following quantities for given data Y :

Z = (z1, · · · , zT ) is the vector of unobserved class labels for all T observations

C = {c1, c2, . . . , cK : ck ⊆ {1, 2, . . . , T}} is the clustering of the observations into K clusters

N = {N1, N2, . . . , NK : Nk =
T∑
i=1

δ(zi = k)} is the number of observations in each cluster
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Besides the clustering pattern, we can also notice another statistical pattern. The observations

within a cluster k are random yet seem to follow some distributional form. In other words, if

we assume that we have observed the labels Z (by conditioning on Z), then we can suppose

that the clustered data Y | Z is governed by a parametric distribution K(.). Accordingly, the

data can be modelled as a mixture of K component distributions such that each component

accounts for the dependencies observed within a cluster of observations. Now, if we associate

with each component distribution K(.) a parameter vector θk, then the collection of all K

parameter vectors can be denoted by

Θ = (θ1, · · · , θK)

Since zt ∈ {1, . . . , K} is a discrete random quantity with support on the positive integers Z+, a

natural modelling choice to quantity our uncertainty is the Categorical distribution. As for the

choice of the kernel, we require a real-valued distribution that has both a mean parameter to

represent the centres of the components and a variance parameter that quantifies the spread of

the observations around a particular center. According to Jayne’s principle of maximum

entropy (Jaynes, 2003), the normal distribution has maximum entropy among all distribution

with a specified variance. The data can be modelled as follows:

zt ∼ Categorical(p)

yt ∼ Normal(µzt ,Σzt)
(3)

Where p is a probability vector. The joint distribution of the data and the two unobserved

quantities we introduced so far is given by p(Z,Θ,Y) which we can factor into

L(Y | Z,Θ) Pr(Θ) Pr(Z)

Since the cluster assignment label zi is unobserved, we can quantify our uncertainty about

the relative proportions of clusters by assigning prior probabilities (e.g. pi = Pr(zi = k)) to

the set of possible outcomes zi ∈ {1, . . . , K}. As have been mentioned earlier, the Dirichlet

distribution is a natural prior for the vector of probabilities p. Note that the joint distribution

of the observable and unobservable quantities is now p(Z,Θ,p,Y). So far the probabilistic

modelling framework we have been pursuing has naturally led us to the Finite Dirichlet
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Mixture Model with the following hierarchical specification:

p ∼ Dirichlet(α)

zi | p ∼ Categorical(p)

Σk ∼ Inv-Wishartν0(Λ
−1
0 )

µk |Σk ∼ Normal(µ0,
Σk

κ0

)

yi |zi,µzi ,Σzi ∼ Normal(µzi ,Σzi)

(4)

where α =
( α
K
, · · · , α

K

)
concentration hyperparameter

p = (p1, · · · , pK) probabilities of class labels

θk = (µk,Σk) mean and covariance of observations in the kth class

Θ = (θ1, · · · , θK) collection of all K parameter vectors

Choosing the concentration hyperparamter α to be uniform across components gives us a

symmetric Dirichlet distribution that allows us to obtain the Dirichlet Process Mixture Model

as a limiting case of the finite Dirichlet Mixture Model. We outline how that can be done as

we describe how the DDPM can be used as for clustering or latent class analysis.

2.1 Clustering Analysis

The posterior distribution of the parameters of the Finite Dirichlet Mixture Model after con-

ditioning on the observed data is

f(Z,Θ,p | Y) ∝ L(Y | Z,Θ) Pr(Θ) Pr(Z | p) Pr(p)

In clustering, we are mainly interested in f(Z | Y) the posterior distribution of the latent

classes, or cluster labels. As a rule in Bayesian computation, we should not leave to numerical

simulation that which we can obtain analytically! In our model, there are two simplifications

we can make.

1. We can integrate p out to ease computation. That is

L(Z,Θ | Y) ∝ L(Y | Z,Θ) Pr(Θ) Pr(Z)

∝ L(Y | Z,Θ) Pr(Θ)

∫
p

Pr(Z | p)) Pr(p)dp

∝ L(Y | Z,Θ) Pr(Θ)

∫
p

N∏
i=1

Pr(zi | p) Pr(p)dp
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2. We can also integrate out Θ since the model employed conjugate priors.

f(Z | Y) ∝
K∏
k=1

[∫
θ

∏
i∈ck

L(yi | θk) Pr(θk)dθ

]
Pr(Z)

Where

Pr(Z) =
Γ (α)

Γ (α + T )
×

K∏
k=1

Γ
(
Nk + α

K

)
Γ
(
α
K

) (5)

is the prior probability of a particular cluster assignment (i.e. labelling) of the observa-

tions.

By keeping fixed a given cluster label zt and assuming exchangibility of the T data observations,

we can obtain the conditional prior of zt given the remaining T − 1 cluster labels Z(−t)

Pr(zt = k | Z(−t)) =
N

(−t)
k + α

K

(α + T − 1)
(6)

In the finite Dirichlet Mixture model, the number of clusters K is assumed to be known before-

hand, thus necessitating fitting multiple models with different number of components. More

importantly however, since the number of clusters K is a fixed quantity, the model’s informa-

tion capacity and complexity doesn’t increase as more data comes in. Now if in Equation 6, we

take the limit K →∞, we get

Pr(zt = k|Z(−t)) =


α

(α+T−1)
if k ∈ new cluster,

N
(−t)
k +α

(α+T−1)
if k ∈ existing cluster;

(7)

These are the prior probabilities of the Chinese Restaurant Process. The Chinese Restau-

rant Process is equivalent to the Polya Urn scheme of representing a Dirichlet Process mixture.

Thus, by taking the limit of components to infinity, we obtain a Dirichlet Process Mixture from

a finite Dirichlet Mixture (Rasmussen, 1999). Note that since the DP is discrete in nature, it

permits the possibility of obtaining ties in the realized values of the latent cluster labels Z.

This in turn induces a probability model on clusters via the DPM model.

2.1.1 Application to Data

The DPMN model can be used with the objective of clustering data or classifying observations if

the cluster labels are available. Although the model is flexible, it does make a few assumptions

that are important to keep in mind.
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• The most basic assumption is that number to of clusters K is countably infinite and

for finite data K → ∞ as T → ∞. Moreover, the expected number of clusters is a

function of the concentration parameter α. More precisely, Figure 5 shows plots of samples

from the Dirichlet process for different settings of α by means of the Polya Urn scheme

representation. As the plots show, the pattern of expected number of clusters tends to

follow the theoretical relationship E(K) = α log(T ). Figure 6 shows scatterplots of data

generated from a bivariate DPMN model under different values of α.
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Figure 5: Realizations of the Dirichlet Process
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Figure 6: Scatterplots of DPMN Model for Bivariate Observations

• The model also assumes that the observations can be grouped into K ≤ T clusters

such that each subject (i.e. observation) belongs to one single cluster only (i.e. soft

clustering). If some of the observations belong to multiple clusters as is the case when

data is characterized by multiple groupings and nested structure, then a more general

model involving the Dependent Dirichlet Process or one of its special cases, the

Hierarchical Dirichlet Process, would be more appropriate.

• A third feature of the model is the form of the kernel. Although the model is nonparamet-

ric and quite flexible, it is still a mixture of normals and does assume that the distribution

of the observations in a given cluster is normally distributed. Clusters with non-Gaussian

shapes might prove problematic for the model such as when the clusters tend to form

a doughnut shape where the distance between clusters can be smaller than the distance

within a cluster.

• A fourth aspect of the model that should be considered is the role of the variance pa-

rameter Λ0 of the centering distribution G0. The more diffuse the variance of the G0 is,

the lower the value of the marginal likelihood is and as a result fewer new clusters get

introduced as more data comes in. In the limit, as variance goes to infinity, the model

reduces to a parametric model with a single cluster. Interestingly, this limiting behaviour
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is similar to what happens when the concentration parameter α goes to 0, namely, we get

the following model

(µ,Σ) ∼ G0

yi | µ,Σ ∼ Normal(µ,Σ)

Even if the data we would like to conduct inference on is appropriate for our model’s assump-

tions, we still need to deal with one more issue that comes up in mixture models and clustering.

When the objective of the analysis is inference on the parameters of specific components, then

interpertablility of the model might be problematic due to identifiability issues, namely, the

invariance of the posterior distribution with respect to the relabelling of the components. That

is, we can switch the labels of the components and still obtain the same likelihood.

The multivariate Dirichlet Process Mixture of Normals model can be applied to clustering data

in many applications. An identical model was used by (Wood & Black, 2008) for neural spike

sorting in order to determine which spikes corresponds to a particular neuron. Similar model

formulations were used for clustering activation patterns in fMRI data (Kim, Smyth, & Stern,

2006) and in verb clustering of linguistics data (Vlachos, 2008).

We have implemented a sequential importance resampling clustering algorithm in Appendix 2.

The code was written in Julia, a fast high-level scientific programming language that has been

developed recently with the aim of improving on some of the flaws found in current scientific

programming languages such as R, Python, and Matlab. It is main advantage with respect to

Bayesian computation lies in the language ability to compile code that reads like Matlab or R,

into machine code runs as fast as C. The code was used to fit the model to a synthetic dataset

with the goal of classifying the multivariate observations into clusters.

2.2 Density Estimation

In density estimation of mixture models, we are concerned with making inference on an unknown

mixture distribution

fG(y) =

∫
Θ

Normal(y | θ)G(dθ)

given data Y = (y1,y2, . . . ,yT ) where yt ∼ fG and θ = (µ, σ2). In our model G follows a

Dirichlet Process prior G ∼ DP(αG0), a prior on the mixture densities.
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We can generate posterior samples from the mixture model f(G | y) based on the posterior

distribution of G, which is a mixture of Dirichlet Processes

G | Y ∼
∫
DP (α +

T∑
t

δθt(.))dp(Θ | Y)

Our object of interest however is fG | Y , which although can be expressed in an analytical form,

the resulting expression is too complicated to be implemented in practice. Instead computation

proceeds by simulation in which draws from the posterior are generated. The mean of the

posterior predictive distribution

E(fG | Y) =
1

|α|+ T

∫
Normal(y | θ)α(dθ) +

1

|α|+ T
E(

T∑
t

Normal(y | θt) | Y)

can be estimated by taking the mean of the posterior draws

2.2.1 Application to Data

Nonparametric density estimation using the DPMN model has been performed both on univari-

ate datasets (Escobar & West, 1995) and multivariate datasets (Muller, Erkanli, & West, 1996).

For example, the model was used to estimate and assess the multimodality of the distribution

density of galaxy velocities. Support for multiple modes provides evidence for the existence of

superclusters in the far universe.

With regards to interpreting posterior inference based on the DPMN model for density esti-

mation, a few additional consideration to the ones we have discussed already are particularly

relevant.

• One important consideration in density estimation is the choice of the kernel function.

Since the Gaussian kernel that we have assigned belongs to the location-scale family of

distribution functions, we are implicitly assuming that the sample space is defined on the

entire real line R. If the sample space was defined on an interval [0,1] instead, then a

Beta kernel would have been an adequate choice. For other domains of support, we can

choose the appropriate kernel on the basis of a Feller prior sampling scheme as detailed

in the framework provided by (Petrone & Veronese, 2002) have provided.

• Once we have estimated the density, we should not confuse the number of modes with the

number of components. The number of modes can serve as a lower bound on the number

of components, but even then, the number of components should be secondary when the

goal of the analysis is density estimation.
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• In our model we have specified a gamma prior on α so that the data can inform the

model of the correct number of components. This is important since the choice of alpha

controls the number of components and we are therefore assuming that the data has

enough signal to be informative about the concentration parameter. More important

though is the choice of those hyperparameters that determine the variance of the kernel.

This is so because high variance leads to less smoothing and an increase in the number

of modes for any given number of components K.

2.3 Random Effects

The DPMN model can be used as random effects model on data consisting of several within-

subject measurements taken from many subjects. The data usually has the same form as in

the clustering application. That is, Y = (y1,y2, . . . ,yt, , . . .) is the data for T subjects where

each vector yt = [yt1, yt2, . . . , ytD] is the repeated measurement for subject t. The difference in

the case of random effects modelling is that we model the mean and the sampling variance as

independent. We also make two assumption: that the repeated measurements are not correlated

and that the mean vector is actually a scalar that is equal across the repeated measurements.

The second assumption implies that the different values that make up the mean vector µ are in

fact due to within subject error. In summary, whereas in the case of clustering of multivariate

observations we considered the following conjugate model

α ∼ Inv–Gamma(aα, bα)

G | α ∼ DP(αG0)

(µt,Σt) | G ∼ G

yt | µt,Σk ∼ Normal(µt,Σt)

(8)

G0 = p (µ,Σ) ≡ Normal-Inv-Wishart(µ0, κ0, ν0,Λ0)

to model random effects, we modify the model slightly to obtain the semiparametric model

α ∼ Inv–Gamma(aα, bα)

G | α ∼ DP(αG0)

σ2 ∼ Inv–Gamma(a0, b0)

µt | G ∼ G

yt |µt, σ2 ∼ Normal(1µt, σ
2I)

where G0 = p (µ) ≡ Normal
(
µ0, τ

2
0

)
(9)
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The above model is basically both a random intercept model that allows the random vari-

ability among subjects to be captured and a latent class model that allows the subjects to be

clustered into groups. Note that the observation model can be reduced to

ytd | µt, σ2 ∼ Normal(µt, σ
2) for d = 1, . . . , D

In a general linear random effects model the prior on the random effects is typically assumed

to be normal. The normality assumption can be inappropriate in situations where we have

subjects that tend to cluster together or where a few subjects tend to be very different from the

rest. This is because the normal distribution has thin tails that prevents the subject effects from

having very different values. In contrast, the nonparametric DP prior is more appropriate. The

Dirichlet Process discrete nature allows the subjects to cluster. Furthermore, the nonparametric

DPM prior is flexible enough to allow multimodality and skewness in the distribution of the

random effects.

2.3.1 Application to Data

• As in the other two applications, we need to carefully consider the the choices of the

hyperparameters. In the context of random effects, as α → 0 we have G = δµ, implying

that all the subjects belong to a single cluster. That is we are effectively fitting a normal

model that ignores the heterogenity of the subjects since the variance of the random

effects distribution is zero. On the other hand, when α→∞ we have G = G0, implying

that each subject will have has own cluster and we are effectively sampling the random

effects from G0.

• Moreover, the choice of variance hyperparameter τ 2
0 should be carefully considered. If

we make it large and uninformative, we risk forcing all the subjects to be in the same

cluster since a high variance parameter has the effect of assigning low probability to the

introduction of new clusters. A proposed solution to deal with sensitivity of the cluster

distribution to the variance hyperparmater is to standardize the data. The standard-

ization can be viewed as an empirical Bayes approach to estimating G0 as suggested by

(McAuliffe, Blei, & Jordan, 2006).

• It should be noted that in the model specification, the DP prior is a discrete distribution

on the random effects, implying that subjects that belongs to a given cluster have the

same value of the random effect. This fact is important when interpreting the model’s

output since if we are interested in clustering subjects that have similar, not just identical,
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random effects, we need to modify the model slightly by assigning the random effects, a

DPM prior instead of a DP prior. More specifically,

α ∼ Gamma(aα, bα)

G | α ∼ DP(αG0)

σ2 ∼ Inv–Gamma(a0, b0)(
µ0t, τ

2
0t

)
| G ∼ G

µt ∼ Normal
(
µ0t, τ

2
0t

)
yt |µt, σ2 ∼ Normal(1µt, σ

2I)

where G0 = p
(
µ0t, τ

2
0t

)
≡ Normal-Inv–χ2 (µ0, κ0, ν0, λ0)

(10)
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3 Question Part C: Sensitivity Analysis

Question The mass parameter is one portion of the parameter of the Dirichlet process. Con-

sider the density estimation version of your model. Generate distributions from your model

for a variety of mass parameters—say masses of 0.01, 1, 10, and 100. (Adjust this generation

as appropriate for your model). Summarize the differences in the distributions as the mass

parameter varies.

Answer Figure 7 shows density histograms of the univariate DPMN model for different set-

tings of the concentration parameter α. As has been discussed earlier, as α → 0 we have

G = δµ and as a result all the observations belong to one component. In the other extreme,

when α→∞, we have G = G0, and as a result each observation has its own component and the

model reduces to G0, a parametric model. Between these two extremes, the expected number

of components is a determined by α according to the relation E(K) = α log(T ), where T is

the number of components. Also, the plots seem to indicate that the number of components is

generally greater than the number of modes. The Julia code for generating the data and the

plots is provided in the appendix.
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Figure 7: Histograms of Dirichlet Mixture Model for univariate Observations
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4 Question Part D: Model Fit and Comparison

Question Provide a fit of your model in part A for a basic density estimation problem to

a data set of your choice. You may find the R code in the Appendix of the book by Muller

and Rodriguez helpful for fitting the model. Contrast this density estimate with a traditional

(classical) kernel density estimate.

Answer The univariate DMPN model was fit to a neural dataset with the goal of estimating

the distribution density of the measurements. The dataset contains 346 peak amplitude mea-

surements of spontaneous currents flowing into individual brain cells of Guinea pigs (Paulsen

& Heggelund, 1994). To goal of the experiment was to determine whether the current flow was

due to a single burst or whether it was quantal in nature, consisting of several regularly spaced

bursts that decrease in magnitude as the current amplitude increases.

Let y1, . . . , yi, . . . . . . , yn be a sample from the density distribution f . The kernel density esti-

mator f̂h(y) of f based on the sample is

f̂h(y) =
1

n

n∑
i=1

Kh(y − yi) =
1

nh

n∑
i=1

K
(y − yi

h

)
,

where h is the kernel’s bandwidth. There are several choices of kernels but a commonly used

kernel that we will considering is the Gaussian kernel

K
(
x
)

=
e−

1
2
x2

√
2π

Figure 8 shows three Gaussian kernel density estimates for varying values of h overlayed on the

data histogram. As can be seen, as the value of h increases, the estimated density increases

in smoothness. The choice of h has a noticeable effect on the density estimate, but if the true

density being estimated is indeed normal an optimal choice for h is

h =

(
4σ̂5

3n

) 1
5

≈ 1.06σ̂n−1/5

which in the case of our dataset is equal to 2.2.

26



Figure 8: Kernel density estimates using bandwidth= 0.1, 1, 3

Now for each observation yi, the Gaussian kernel estimator adds a normal distribution with

mean yi and standard deviation h to the model resulting in the addition of one parameter for

each new observation, see Figure 9. Therefore, the number of parameters increases linearly

with the number of data points n and, asymptotically, the number of parameters is infinite.

Figure 9: Gaussian ernels for the first 5 observations using bandwidth= 0.1

To determine whether the current was quantal or not, a bootstrap test of multimodality can be

performed in which we try to see if large h is needed to make the estimated density unimodal.

A test statistic suggested by (Davison & Hinkley, 1997) is to take

t = min
h>0
{h : f̂(y;h) is unimodal}

For the observed data, the minimum value of h that gives one mode is h = 1.873 and therefore
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samples from the estimated density under the null distribution can be generated as

y∗i ∼ Normal(yIi , t
2) i = 1, . . . n

where I is random integer. The bootstrap statistics obtained from the conducting the test

are t1∗ = 1 with bias=0.02 and standard error=0.14. Thus, we can conclude that there is no

evidence for multimodality under the null distribution.

We now contrast the kernel density approach with an alternative analysis that uses the uni-

variate DPMN model with the following hyperparameters settings:

aα = 1 bα = 1

µ0 = 10 κ0 = .05

ν0 = 4 λ0 = 1

The choice of hyperparameters basically specifies a DPMN model with a concentration param-

eter α that is random and a centering distribution parameter G0 that is fixed.

Figure 10 summarizes the inference of the model fit. The density estimate of the model with

random α and fixed G0 is shown in yellow. Posterior inference on the parameters produced a

mean of 8.72 for the number of clusters K and a mean of 1.49 for α. Plots of the posterior

densities for the two parameters are shown side by side in Figure 11.

Figure 10: Density estimates using the DPMN model

Also shown in Figure 10 are two additional density estimates. One obtained from fitting an

equivalent model but with fixed α = 1, all-fixed model. The second (in blue) is obtained under

a model in which both α and G0 are random, all-random model. As can be seen, in all three
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model specifications, the density estimates are very close to each other, all characterized by

two modes.

Figure 11: Posterior Densities of α and K

It is interesting to note that the distribution of the number of clusters parameter K is heavily

skewed with a sharp mode at K = 2. The distribution gives us a better understanding of

the possible number of clusters are and how likely they are. This a case where reliance of

point estimates such maximum a posteriori probability, K = 2 or on point summaries such the

posterior mean, 8.72, can be either insufficient or misleading. Instead, the entire distribution

of the number of clusters provides an insightful representation of uncertainty in the analysis

that can be updated as more data comes in.

Whereas a Gaussian parametric model for our dataset can have a single component whereas a

non-parametric kernel density model can have as many components as a there are data points

(i.e. 346), the DPMN model has an expected number of component E(K) = α log(n), which

for the case of 346 observations and a α = 1 is equal to E(K) = 5.85. We see that by setting

the value of α we can control the number of clusters that get introduced, all the while we are

allowing for the possibility of an infinite number of components as more data comes in. At any

rate, if the goal of the analysis is purely confined to density estimation, then the number of

components should be of secondary concern since as can be seen from the model fits of the other

two models, both had a lower posterior mean for K, namely, 6.3 for the all-random model, and

6.6 for the all-fixed model yet all three models considered had similar density estimates.

The model was fit using the DPpackage (Jara, Hanson, Quintana, Müller, & Rosner, 2011).

The analysis script is provided in the appendix.
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5 Question Part E: Model Extension

Question Many models rely on more than one distribution. Extend your model in part A to

provide density estimates for a pair of distributions, as in the two-sample problem. Comment

on the choices you have made in developing your model. What properties have you chosen to

build into your model? What properties have you chosen to avoid building into your model?

The Two-Sample Problem Let Y1 = (y11, . . . , y1i, . . . . . . , y1I) be a random sample distri-

bution FG1 and Y2 = (y21, . . . , y2j, . . . . . . , y2J) be a random sample from distribution F2. The

two-sample problem is concerned with testing the hypothesis of the equality of two distribution

F1 = F2 (Lehmann & Romano, 2006). When F1 are F2 normally distributed, the appropriate

test for the the alternative hypothesis is a Student’s t test. When no distributional assumptions

are made several alternative hypotheses are usually considered. For example,

• F1 6= F2 The two distributions are not equal

• ∀y F1(y) = F2(y −∆) The difference is due to an additive effect

• ∀y F1(y) ≤ F2(y) The y′2js are stochastically greater than the y′1is: The additive effect

∆ is a non-negative function of y and the density f2(y) is shifted relative to f1(y)

By the principle of invariance, the two-sample problem under the stochastic order restriction

reduces to a rank test (e.g. Mann–Whitney U test or the normal-scores test). Now for the case

of paired samples {(y1i, y2i}i=1,...,I from bivariate distribution FG1,G2(y1, y2) we can have two

additional alternative hypotheses

• FG1,G2(y1, y2) 6= FG1,G2(y2, y1) FG1,G2 is not symmetric (i.e. there is an effect)

• FG1,G2(y1, y2) 6= F1(y1)F2(y2) The samples are dependent

Let F1 and F2 denote the distribution of particular biomarker for healthy and infected adults,

respectively. If we do not make any assumption about nature of the effect or whether the

samples are stochastically ordered and if we also do not model measurement errors due to the

biomarker serology test, we can write the Dirichlet Process Mixture of Normals Model for the
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two independent samples (s = 1, 2) as follows:

αs ∼ Inv–Gamma(aαs , bαs)

Gs | α ∼ DP(αsG0s)(
µst, σ

2
st

)
| Gs ∼ Gs

yst | µst, σ2
st ∼ Normal(µst, σ

2
st)

G0s = p
(
µs, σ

2
s

)
≡ Normal-Inv–χ2 (µ0s, κ0s, ν0s, λ0s)

(11)

where

θik =
(
µik, σ

2
ik

)
is the mean and variance of the kth component in the s’th group

The model can also be written as

FGs(.) =

∫
Θ

Φ(. | θ)Gs(dθ)

Gs | α ∼ DP(αsG0s)

To incorporate the systematic error of measurement, we can assign the DPM prior on the mean

components on similar to the semiparametric model of random effects discussed in the previous

section. The specified model allows us assess the discriminatory ability of diagnostic marker

and determine the amount of separation between the two distributions by means of ROC curve

analysis.

However, the specified model assumes that the distributions of two populations are not con-

strained. The assumption implies, for example, that if the subpopulations that make up the

mixture distribution of the infected population are in varying stages of disease severity, then it

is possible that the early-stage cluster of infected individuals, as a whole, would have a lower

serological score than a substantial portion of healthy adults. This can be fixed by incorporat-

ing a stochastic order restriction in the model specification as suggest by (Hanson, Kottas, &
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Branscum, 2008).

σ2 ∼ Inv–Gamma(a0, b0)

αH ∼ Inv–Gamma(aαG
, bαG

)

αG ∼ Inv–Gamma(aαH
, bαH

)

G,H | αH , αG ∼ DP(αHH0) DP(αGG0)

φj | G ∼ G j = 1, . . . , n2

µi | H ∼ H i = 1, . . . , n1, . . . , n1 + n2

y2j | µ(n1+j), φj, σ
2 ∼ Normal(max(µ(n1+j), φj), σ

2) j = 1, . . . , n2

y1i | µi, σ2 ∼ Normal(µi, σ
2) i = 1, . . . , n1

G0 = p
(
φ, τ 2

G

)
≡ Normal-Inv–χ2 (µG, κG, νG, λG)

H0 = p
(
µ, τ 2

H

)
≡ Normal-Inv–χ2 (µH , κH , νH , λH)

(12)

The model can also be written as

F1(.) =

∫
Φ(. | µ, σ2)H(dµ)

F2(.) =

∫ ∫
Φ(. | (max(µ, φ), σ2)G(dφ)H(dµ)

G,H | αH , αG ∼ DP(αHH0) DP(αGG0)
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Part II

Appendix: Julia and R Code

A Appendix: Part I

A.1 Forward Simulation Code in Julia

Figure 12: Polya Urn Function
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Figure 13: Dirichlet Process Mixture: Data Simulation
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Figure 14: Dirichlet Process Mixture: Plotting Functions
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A.2 Kernel Density Estimation Scripts in R

library (rbokeh)

library (boot)

data(paulsen)

attach(paulsen)

y <− paulsen$y

f <−figure(

width = 600, height = 400,xlim = c(0,5),tools = tools

) %>%

ly_hist(y, breaks = 60, freq = FALSE) %>%

x_axis(label = "Current Amplitude (microAmp)") %>%

ly_density(y,color = "green",bw = 0.1) %>%

ly_density(y,color = "blue",bw = 1) %>%

ly_density(y,bw = 3)

f

xx <− seq(0,6,.01)

yy <− dnorm(xx,mean(paulsen$y),sd(paulsen$y))

dt <− sort(y)

dt <− dt[dt < 4.5]

yy1 <− dnorm(xx,dt[1],.1)

yy2 <− dnorm(xx,dt[2],.1)

yy3 <− dnorm(xx,dt[3],.1)

yy4 <− dnorm(xx,dt[4],.1)

yy5 <− dnorm(xx,dt[6],.1)

p1 <−figure(

width = 600, height = 400,xlim = c(2.5,4.5)

) %>%

ly_lines(xx, yy1,color = "blue") %>%

ly_lines(xx, yy2,color = "green") %>%

ly_lines(xx, yy3,color = "purple") %>%

ly_lines(xx, yy4,color = "brown") %>%

ly_lines(xx, yy5,color = "yellow") %>%

ly_points(dt,0,color = "red",size = 7) %>%

x_axis(label = "Current Amplitude (microAmp)") %>%

y_axis(label = "density")

p1

n <− length(y)

sd(paulsen$y) ∗ (4 / n ∗ 3) ^ (.2)

####################

#from Davison’s Bootstrap methods and their application

peaks <− function(series,span = 3, ties.method = "first")

{

if ((span <−

as.integer (span)) %% 2 != 1)

stop("’span’ must be odd")

z <− embed(series, span)

s <− span %/% 2

v <− max.col(z, ties.method = ties.method) == 1 + s

pad <− rep(FALSE, s)

result <− c(pad, v, pad)

result

}

peak.test <− function(y, h) {

dens <− density(y,bw = h,n = 100)

sum(peaks(dens$y[(dens$x >= 0) & (dens$x <= 20)]))

}

peak.gen <− function(d,mle) {

n <− mle[1] ;

h <− mle [2]

i <− sample(n,n,replace = T)

d[ i ] + h ∗ rnorm(n)

}
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h = 1.873

peak.test(paulsen$y, h)

paulsen.boot <− boot(

paulsen$y, peak.test , R = 999,

sim = "parametric",

ran.gen = peak.gen ,

mle = c(nrow(paulsen),h),

h = h

)

print(paulsen.boot)

plot(paulsen.boot)
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A.3 DPMN Density Estimation Scripts in R

library (DPpackage)

library (rbokeh)

library (boot)

data(paulsen)

attach(paulsen)

current <− paulsen$y

state <− NULL

# MCMC parameters

nburn <− 1000

nsave <− 15000

nskip <− 10

ndisplay <− 100

mcmc <− list(

nburn = nburn, nsave = nsave,nskip = nskip,ndisplay = ndisplay

)

prior1 <− list(

a0 = 1, #alpha | a0, b0 ~ Gamma(a0,b0)

b0 = 1,

#G0 = N(mu| m1, (1/k0) Sigma) IW (Sigma | nu1, psi1

m2 = 10, #m1 | m2, s2 ~ N(m2,s2)

s2 = 100000,

tau1 = 1, #k0 | tau1, tau2 ~ Gamma(tau1/2,tau2/2)

tau2 = 100,

nu1 = 4,

nu2 = 4, #psi1 | nu2, psi2 ~ IW(nu2,psi2)

psiinv2 = 1

)

prior2 <− list(

a0 = 1, #alpha | a0, b0 ~ Gamma(a0,b0)

b0 = 1,

m1 = 10,

k0 = .05,

nu1 = 4,

psiinv1 = 1

)

prior3 <− list(

alpha = 1,

m1 = 10,

k0 = .05,

nu1 = 4,

psiinv1 = 1

)

fit1 <− DPdensity(

y = current,prior = prior1,mcmc = mcmc,

state = state,status = TRUE

)

fit2 <− DPdensity(

y = current,prior = prior2,mcmc = mcmc,

state = state,status = TRUE

)

fit3 <− DPdensity(y = current, prior = prior3, mcmc = mcmc,

state = state,status = TRUE)

print( fit2 )

plot( fit2 ,ask = FALSE,output = "param")

K <− fit2$save.state$thetasave [,4][ nburn:nsave]

alpha <− fit2$save.state$thetasave [,5][ nburn:nsave]

d1 <− figure(width = 600, height = 400) %>%

ly_hist(current, breaks = 60, freq = FALSE) %>%

ly_lines( fit1 $x1, fit1 $dens,color = "blue") %>%

ly_lines( fit2 $x1, fit2 $dens,color = "yellow") %>%
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ly_lines( fit3 $x1, fit3 $dens,color = "red") %>%

x_axis(label = "Current Amplitude (microAmp)") %>%

y_axis(label = "density")

d1

d2 <− figure(width = 600, height = 400,xlim = c(0,8)) %>%

ly_hist(alpha, breaks = 200, freq = FALSE) %>%

ly_density(

alpha,color = "green",bw = .2,legend = "bandwidth=0.1",width = 3

) %>%

x_axis(label = "Concentration Parameter: alpha") %>%

y_axis(label = "density")

d2

d3 <− figure(width = 600, height = 400,xlim = c(0,35)) %>%

ly_hist(K, breaks = 50, freq = FALSE) %>%

ly_density(K,color = "green",legend = "bandwidth=0.1",width = 3) %>%

x_axis(label = "Number of Cluster: K") %>%

y_axis(label = "density")

d3
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